Statistical Visual

computingLlab  Catastrophic Child’s Play: Easy to Perform, Hard to Defend Adversarial Attacks

<= UC SanDiego Chih-Hui Ho, Brandon Leung, Erik Sandstrom, Yen Chang, Nuno Vasconcelos

|ntrOdUCt|On Dataset CO”eCthn EXperlmentS & Flndlngs Imperceptible Perturbation Semantically Imperceptible

Perturbation

Recently, the robustness of CNNs have been questioned Image Dataset Composition Attacks and Defenses e

by adversarial attacks -- imperceptible perturbations «  Pictures of 500 objects at 8 different angles, taken by . We try to attempt real-world manipulations attacks on ! ! H E m g g
added to the original image, such that the CNN classifies drones. Each object has a predefined frontal angle. CNNs, with indistinguishable image pairs (table 1). L__3__n = s —& 1 % __
|nC0rreCt|y . _ — Piano Fools emote 00 — Keyboar: ools — Boat 00 _'
30 images taken per angle, total of 120,000 images. . - : 7] ' J - .

 Most attacks are imperceptible under some arbitrarily Various current defense methods used (figure 6) = = ! !

 Objects are evenly divided into 25 classes, such as
“backpacks”, “bottles”, and “shoes”.

e Each picture annotated with class, pose, blurriness
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e Training Is on either ImageNet, only frontal images of

small perturbation (e.g. defined by an L, norm). We
defense dataset, or the entire defense dataset.
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“Imperceptible Perturbation”(IP): Pictures appear

« A new dataset is used to study a class of human-based,

. the same, down to the pixel level. Transformation Defenses . . .
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