
Towards a Deeper Understanding of Unsupervised Domain Adaptation 
Brandon Leung 

 

Section 1: Introduction 

 

In supervised machine learning, a common paradigm is to use labeled data (the “training set”) to learn the weights 

of some model, so that the model can not only produce accurate output labels for the training data points, but also 

generalize to new data not in the training set. In the past decade, with the introduction of fast GPUs and large 

datasets, tremendous progress in this area has been made with deep neural networks. However, one of the base 

assumptions is that the data used to train a model and the data seen at test time (when it is time to deploy the 

model) are drawn from the same underlying distribution. 

 

Unfortunately, this is not always realistic in practice, because labeled data can be hard to obtain. Thus, we often find 

ourselves in a situation where we don’t have labeled data in the distribution we’re actually interested in (called the 

test distribution). In the test distribution, we only have unlabeled data. However, we do have labeled data in a 

similar distribution (called the target distribution). One way to address this issue is called Unsupervised Domain 

Adaptation (UDA). In this setting, we assume that during training, we have access to labeled data from our source 

distribution as well as unlabeled data from our target distribution. The goal is to somehow effectively leverage our 

labeled source data and unlabeled target data during training, so that at test time, our model can predict outputs for 

the target data well. UDA is supervised with regards to the source distribution, but unsupervised with regard to 

target distribution. For example, a common scenario is that the source distribution is composed of rendered 3D 

models, (which are easy to obtain since you can render as many lighting conditions, backgrounds, viewpoints as 

desired). We are interested in using these rendered images and applying them to the real-world image distribution, 

e.g. for a classification task. However, UDA is much more general than this and in principle can apply to any 

reasonable shift in distribution. 

 

There has been much research in the UDA literature recently, with many proposed algorithms and methods. In 

Section 2 of this report, we precisely describe the UDA setting and give a literature review of the field, with a focus 

on methods tailored to image data. However, most can be generalized to other data types. In Section 2d, a new, 

unified taxonomy is proposed which serves to generalize most of the current UDA methods. This allows us to better 

understand the core principles used. Finally, in Section 3, we take a specific look into one of the current state of the 

art methods for UDA image classification in computer [1]. It uses a few techniques, such as the MMD distance metric, 

spherical k-means clustering, and psuedolabeling. We summarize the method and perform some experiments 

beyond what was presented in the original paper, which yield interesting insights into how it operates. 

 

 

 

 

 



Section 2: Literature Review of UDA 

 

The mathematical formulation of UDA is as follows. First, 𝐷𝑆 = {(𝑥1
𝑠, 𝑦1

𝑠), … (𝑥𝑁𝑠

𝑠 , 𝑦𝑁𝑠

𝑠 )}  are our source domain 

samples, where the 𝑥𝑖
𝑠  realizations of the random variable 𝑋𝑠 and 𝑦𝑖

𝑠 is the ground truth label for 𝑥𝑖
𝑠 . For example, 

𝑥𝑖
𝑠  could be an RGB image containing a dog while 𝑦𝑖

𝑠  is an integer mapped to the label “dog”. Next, 𝐷𝑇 =

{(𝑥1
𝑡), … (𝑥𝑁𝑡

𝑡 )} are our target domain samples, where the 𝑥𝑖
𝑡  realizations of the random variable 𝑋𝑡 . We don’t have 

access to the ground truth value of 𝑦𝑖
𝑡; our goal is to predict it. We assume that 𝑋𝑡  and 𝑋𝑠 are in the same feature 

space, and likewise, that 𝑦𝑖
𝑡 and 𝑦𝑖

𝑠 are in the same label space. However, 𝑋𝑡  and 𝑋𝑠 have a different distribution. 

Then, most current methods achieve UDA by one of two ways: 1) learning to map samples to a useful domain 

invariant feature space, or 2) learning a mapping function between domains. These two approaches to UDA, along 

with an overview of other significant works and considerations for the UDA literature, are discussed below.  

 

Section 2a: UDA by Learning Domain Invariant Features 
 

The most common and generally successful approach to UDA is to first learn some feature extractor(s) whose 

outputs are domain invariant (i.e. one cannot tell if the outputs are from the source domain or target domain), and 

then learn some task-specific model from the labeled source training data which takes the extracted features and 

outputs the desired label. Some methods, like use the same feature extractor (ie, sharing all the weights) for both 

source and target inputs. Meanwhile, other methods have different feature extractors for the source and target, but 

regularize/constrain them in some way. The other main design choice is the loss which enforces the output features 

to be domain invariant. The high-level idea is that the distribution of feature outputs from the model should be the 

same, regardless if the inputs are from the source distribution or the target distribution. Thus, no labels are 

necessary – we simply want to minimize some notion of distance in feature distributions. Some examples used in 

UDA are as follows: 

 

• One simple way to perform UDA is to align the first-order and second-order statistics of the source and target 

distributions. CORAL [2] does this with linear algebra, by first whitening the source data and making it unit 

covariance. Then, the source is “recolored” with the target covariance. However, this requires SVD, which is 

not scalable – Deep CORAL [3] is an alternative by performing alignment in feature space by enforcing that 

the second order statistics of the extracted features be the same. Additionally, [4,5] formulate a geodesic 

version of Deep CORAL. 

 

• One of the most prominent notions of distribution distance used in practice is the Maximum Mean 

Discrepancy (MMD). The general idea and results are as follows. Let 𝑋~𝑃 be a random variable with domain 

Ω and distribution 𝑃. Suppose we have a reproducing kernel Hilbert space (RKHS) ℋ  with some kernel 

𝑘: Ω × Ω → ℝ  defined as 𝑘(𝑥, 𝑥′) =< 𝜙(𝑥), 𝜙(𝑥′) >ℋ  where 𝜙(𝑥) = [… 𝜙𝑖(𝑥) … ]  is some feature map 

𝜙: Ω → ℋ, whose output can be infinite dimensional. The output of the kernel can be viewed as a measure of 

similarity between 𝑥 and 𝑥′. Next, define 𝜇𝑝 = 𝐸𝑃[𝜙(𝑋)] = [… 𝐸𝑃(𝜙𝑖(𝑋)) … ]. That is, 𝜇𝑝 is the mean feature 



embedding for X; it is a point within the RKHS. Then, given two distributions P and Q, their MMD distance is 

defined as the distance between these feature means: 

 

𝑀𝑀𝐷2(𝑃, 𝑄) = ‖𝜇𝑄 − 𝜇𝑄‖
ℋ

2
 

= 𝐸𝑃𝑘(𝑋, 𝑋′) + 𝐸𝑄𝑘(𝑌, 𝑌′) − 2𝐸𝑃,𝑄𝑘(𝑋, 𝑌). 

 

Empirically, given datasets 𝑥1, … , 𝑥𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖~𝑃 and 𝑦1, … , 𝑦𝑚 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖~𝑄, this quantity can be estimated 

as: 

 

𝑀𝑀�̂�(𝑃, 𝑄) = ‖
1

𝑛
∑ 𝜙(𝑥𝑖)

𝑛

𝑖=1

−
1

𝑚
∑ 𝜙(𝑦𝑖)

𝑚

𝑖=1

‖

ℋ

2

 

=
1

𝑛2
∑ ∑ 𝑘(𝑥𝑖, 𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1 + ∑ ∑ 𝑘(𝑦𝑖, 𝑦𝑗)𝑚

𝑗=1
𝑚
𝑖=1 −

2

𝑚𝑛
∑ ∑ 𝑘(𝑥𝑖 , 𝑦𝑗)𝑚

𝑗=1
𝑛
𝑖=1 . 

 

This is the “feature view” of MMD. Furthermore, it can be shown that: 

 

𝑀𝑀𝐷(𝑃, 𝑄) = ‖𝜇𝑝 − 𝜇𝑄‖ = sup
𝑓∈ℱ

(𝐸𝑃[𝑓(𝑋)] − 𝐸𝑄[𝑓(𝑌)]) 

 

where 𝐹  is a unit ball in our RKHS. In other words, there is also a “functional” view of MMD which is 

equivalent to the feature view. A key result that if the kernel chosen for the RKHS is a characteristic kernel, 

then 𝑀𝑀𝐷(𝑃, 𝑄) = 0 ⇔ 𝑃 = 𝑄 , because each distribution can be uniquely defined in the RKHS and all 

statistical moments are captured. For example, the gaussian kernel (also known as the RBF kernel) is a 

characteristic kernel. One advantage of the MMD is that it does not require density estimation (unlike the KL 

divergence). 

 

The proofs of these results require a familiar understanding of topics in functional analysis, probability 

theory, statistic, and measure theory, so they have been omitted here but can be found in [6]. While there are 

many MMD-based UDA papers, we next go over some of the most popular ones. The MMD was first 

introduced as a two-sample test statistic to determine if samples were drawn from different distributions 

[6]. Then, this was first used in a UDA context by DDC [7]. Subsequently, the DAN [8] architecture extended 

DDC by introducing the MMD loss at multiple layers, and a selection strategy which can consider multiple 

kernel functions. On the other hand, JAN [9] aligns the joint distributions of multiple layers in the neural 

network through their joint MMD criterion.  RTN [10] also uses the MMD loss, but relaxes the shared-

classifier assumption an allow the source and target feature extractors differ by a residual function. CAN uses 

psuedolabels obtained by clustering to compute the on the class-conditional distribution MMD loss between 

the source and target domain. Since it represents the current state-of-the-art, a more detailed description of 

CAN is given in Section 4.   

 



• Besides MMD, another notion of “distribution distance” derived from distribution classifiers has also seen 

success. Here, the main insight is two given distributions are similar if given some sample, it is difficult to 

classify and label the distribution that the sample belongs to. Conversely, given two distributions and 

samples drawn from those distributions, if it’s easy to classify the samples then the two distributions are 

quite different (the distance is large). This was studied in the DANN paper [11], where a neural network 

classifies the domain given the output of the feature extractors. A minimax scenario is created where the 

domain classifier optimizes accuracy on the domain label while the feature extractor tries to reduce the 

accuracy of the domain classifier (by outputting domain-invariant features). In practice, this was achieved 

by a gradient reversal layer (GRL) during backpropagation. Other papers also successfully utilize this idea. 

For example, Domain Confusion [12] uses a confusion loss based on optimizing a domain classification loss 

and a domain confusion loss (in an iterative, alternating way) instead of the GRL. Meanwhile, ADDA [13] 

pretrains an encoder on the source domain and then fixes it when learning a domain-classifier minimizing 

feature extractor on the target domain, instead of the GRL. 

 

• Some methods [14] use a measure of discrepancy based on optimal transport, which at a high level, measures 

the amount of “effort” required to change one distribution into another.  

 

Section 2b: UDA by Learning a Domain Mapping 

 

Another class of UDA methods aims to learn a transformation of the input data. For example, if we were able to learn 

a reasonable pixel-level transformation from the source distribution to the target distribution (ie, preserving the 

inherent content and label of images but changing the style)., then we could just transform all our source images to 

match images drawn from the target distribution Nearly all of these methods use a GAN to learn the transformation 

[15, 16]. These methods have found success on simpler datasets like MNIST, and provides an easy to understand, 

intuitive view into how it works (we are able to visually access the quality of the transformation). However, they 

generally struggle when it comes to more difficult datasets, because learning a realistic transformation in pixel-

space is difficult. Indeed, it could be argued that the task of learning this transformation, to subsequently be applied 

to UDA, is more difficult than the original UDA task to begin with. 

 

A related direction focuses on interpolating on the manifold between the source and target domain in feature space 

[17, 18, 19, 20]. Most of these are somewhat dated, except for [20] which is similar in sprit to the older methods but 

do the interpolation in pixel space using a CycleGan. So, this is essentially UDA by learning a domain mapping. 

 

 

 

 

 

 

 



Section 2c: Other Significant UDA Works 
 

Besides algorithms to achieving UDA, are also some other considerations for UDA: 

 

• First, an important work by Ben-David et al. [21] provides a mathematical, theoretical basis on why UDA 

works. In particular, a bound on a classifier’s error on the target domain based on the source domain error 

and the divergence of the two domains is presented.  

 

• Another concern is the evaluation of the models – many works tune hyperparameters with a target validation 

set, and/or evaluate performance on a target test set. This is a somewhat controversial practice, since “pure” 

UDA assumes no labeled target data at all. Though research in this direction is still quite sparse, one work 

which addresses this well is [22] which estimates the target risk using the source risk in an unbiased way 

using importance weights, computed with a domain classifier network. 

 

• Next, note that while there are many UDA models which can be easily generalized to many tasks, other papers 

present UDA models tailored to specific tasks. For example, [23] uses self-training and UDA for the task of 

object detection, while [24] uses curriculum learning and UDA for the task of urban scene semantic 

segmentation.  

 

• There are also other settings similar to UDA. Domain generalization (DG) [25] can be viewed as a harder 

version of UDA which does not use any target data at all; the goal is to learn a robust, generalizable classifier 

that will perform well on unseen target data. Meanwhile, settings like open set DA [27] and Universal DA 

[26] allow that the source and target domains have different label spaces, by the introduction of an “unknown” 

class. However, UDA still remains the most widely studied setting while DG, Open Set DA, and Universal DA 

have received less attention. 

 

In conclusion, there are many different methods to achieve UDA. While the more recent methods generally have 

better performance than older methods on the usual benchmark datasets, it is difficult to say which UDA method is 

objectively the “best”. This is because the methods generally have different trade-offs in computational complexity, 

implementation complexity, and levels of current theoretical understanding. In practice, the best approach to 

picking a method to deploy is to try a few different modes which are close to state-of-the-art for the standard 

benchmark datasets and seeing which work best for your particular dataset/task/use case. In this regard, currently, 

choosing a UDA method for deployment it is partially an “art”, partially a science. 

 

Section 2d -- A Unified Taxonomy for Domain-Invariant Feature UDA Methods 

 

In this section, a categorization scheme is proposed to organize the many different UDA methods. We focus on the 

methods which aim to find domain-invariant features (i.e. the methods as described in Section 2a), since those are 

the ones which have found the most success. For example, standard CORAL (not Deep CORAL) can be best 



understood as a preprocessing algorithm, and has been omitted. Similarly, methods which learn a domain mapping 

(as described in Section 2b) have also been omitted.  

 

The categorization is summarized in Table 1. It was created based on the following observations: 

• In general, there are three key choices that methods in this class need to make: 

o Weight Sharing: Some methods, share the same feature extractor (ie, sharing all the weights) for 

both source and target inputs. Meanwhile, other methods have different feature extractors for the 

source and target, but regularize/constrain them in some way. 

o Loss Function: Loss functions can be divided into two classes: MMD-based and Domain Classifier 

Based.  

▪ MMD-Based: Here, some variant of the MMD is used. They can change by the type of kernel 

used or the type of distribution (i.e. marginal, conditional, or joint) used to compute the 

empirical MMD. 

▪ Domain-Classifier: Here, we access the distribution distance by the ability of a classifier to 

assign a binary label to features: if the feature is from the source or target distribution. 

Methods differ by the way this is trained: through a minimax formulation, iteratively, or with 

a GAN-inspired loss. 

o Class-Awareness: This is a high-level characterization of models which addresses if the method 

aligns class-conditional distributions or not. 

• While not explicitly said in the paper, it’s easy to see that the loss used in DDC [7] is a linear kernel; that is, 

𝐾(𝑥, 𝑦) = 𝑥𝑦 where 𝜑(𝑥) = [𝑥].   

• CORAL [3] is actually equivalent to minimizing MMD with the polynomial kernel 𝐾(𝑥, 𝑦) = (1 + 𝑥𝑦)2 = 1 +

2𝑥𝑦 + 𝑥2𝑦2 , where 𝜑(𝑥) = [1, 𝑥, 𝑥2] . Then the MMD loss is 𝑀𝑀𝐷2(𝑃, 𝑄) = ‖𝜇𝑝 − 𝜇𝑞‖
ℋ

2
 where 𝜇𝑝 =

𝐸𝑥~𝑃[𝜑(𝑥)] = [1, 𝐸(𝑋), 𝐸(𝑥2)].  

 

 

 

Method Name Weight Sharing Loss Aligning Class? 
DDC [7] Shared MMD (Linear Kernel) Class-Agnostic 
DAN [8] Unshared MMD (multiple RBF kernels) Class-Agnostic 
JAN [9] Shared MMD (Joint, RBF kernel) Class-Agnostic 
RTN [10] Shared MMD Class-Agnostic 
Deep CORAL [3] Shared  MMD w/ Poly. kernel Class-Agnostic 
DANN/ GRL [11] Shared Domain Classifier + Minimax Class-Agnostic 
Domain Conf. [12] Shared Domain Classifier + Iterative Class-Agnostic 
ADDA [13] Unshared Domain Classifier + GAN Class-Agnostic 
CAN [1] Shared MMD (on cond. Dist) Class-Aware 

 

Table 1. A categorization of the different domain-invariant feature UDA methods. 

 



Section 4a – Contrastive Adaptation Network for UDA Image Classification 
 

One current state of the art methods for UDA applied to image classification tasks is the Contrastive Adaptation 

Network (CAN) [1]. The main insight is that since we want to do classification, we should pay attention to aligning 

the class-conditional distributions, not just aligning the marginal distributions in a class-agnostic way as most other 

works have done [3, 7, 8, 9, 10, 11, 12, 13]. Suppose we have our source dataset  𝐷𝑆 = {(𝑥1
𝑠, 𝑦1

𝑠), … (𝑥𝑛𝑠
𝑠 , 𝑦𝑛𝑠

𝑠 )}  and 

our target dataset 𝐷𝑇 = {(𝑥1
𝑡, 𝑦1

�̂�), … (𝑥𝑛𝑡
𝑡 , 𝑦𝑛𝑡

�̂� )}. Usually, we don’t have access to target domain labels 𝑦𝑖
�̂�, but let us 

assume for now that we have some way to estimate them (the details of this are described later). Also, let 𝜙(𝑥) 

denote the feature output of some layer in a neural network. Then, we can compute an empirical estimate of the 

MMD between the distributions conditioned on classes 𝑐1 and 𝑐2 as 

 

�̂�𝑐1𝑐2 = 𝑀𝑀𝐷(𝑃(𝜙(𝑋𝑠)|𝑌𝑠 = 𝑐1), 𝑃(𝜙(𝑋𝑇)|𝑌𝑇 = 𝑐2)) = 𝑒1 + 𝑒2 − 2𝑒3 where 

 

 
 

Note that when 𝑐1 = 𝑐2 = 𝑐, this measures intra-class (within-a-class) domain discrepancy. We want to minimize 

this for all classes 𝑐 to encourage domain-invariant features. Meanwhile, when 𝑐1 ≠ 𝑐2, this becomes the inter-class 

(between class) domain discrepancy. We want to maximize this for all pairs of different classes 𝑐1, 𝑐2 in order to 

make the distributions farther away. This practice effectively increases the margin of the decision boundary in the 

space, making predictions more robust. These notions, along with a standard cross-entropy classification loss on 

the source data, are described in the following loss function: 

ℒ = ℓ𝑐𝑒 + 𝛽�̂� 
𝑐𝑑𝑑 

 

ℓ𝑐𝑒 = −
1

𝑛𝑠
∑ log 𝑃𝜃(𝑦𝑖

𝑠|𝑥𝑖
𝑠)

𝑛𝑠

𝑖=1

  



 
Figure 1. Examples of images in the monitor class from the Office-31 dataset. 

 

where 𝑃𝜃(𝑦|𝑥)  is the output probability distribution for the predicted labels of an input 𝑥 , from a CNN 

parameterized by parameters 𝜃. 

 

The missing part as mentioned earlier is actually estimating the target domain “psuedolabels”  𝑦𝑖
�̂�. While this could 

be done naively by just using the output of the CNN, this would most likely lead to poor results due to noise. Instead, 

the CAN paper proposes a method based on spherical k-means. Here, “spherical” refers to use of the cosine 

dissimilarity 𝑑𝑖𝑠𝑡(𝑎, 𝑏) =
1

2
(1 −

𝑎⋅𝑏

‖𝑎‖ ‖𝑏‖
) as the metric to measure between points 𝑎, 𝑏 in feature space for Lloyd’s k-

means algorithm. The algorithm is as follows: 

 

• First, we forward {𝑥𝑖
𝑠} through our feature extractor, and find the mean feature for each class. 

• We initialize the target centers as the source class centers, and perform k-means on {𝑥𝑖
𝑡} after forwarding 

those through our feature extractor 

• We assign each sample 𝑥𝑖
𝑡  to the label corresponding the class of the nearest centroid 

• Ambiguous data (far from their cluster centers) are filtered out based on a threshold 

• Ambiguous classes (containing few target samples around their cluster center) are filtered out based on a 

threshold 

 

This k-means algorithm to obtain psuedolabels is alternated with optimizing the network by backpropagation. In 

general, as training progresses the amount of ambiguous data and ambiguous classes decreases. 

 

Section 4b – Contrastive Adaptation Network Experimental Results 
 

In this section we present some experiments beyond what was presented in the original CAN paper [1], which yield 

interesting insights into how it operates. In particular, we take a look at how the pseudolabel accuracy progresses 

during training. One could argue this is the most interesting aspect of the algorithm, since the MMD formulation has 

already been established in previous works, and their proposed loss is a small modification of it. Moreover, the 

method which is used to select psuedolabels is (spherical) k-means – this is a known NP-hard problem, and the 



standard algorithm (Lloyd’s algorithm) is sensitive to initialization. Meanwhile, it is unclear if CAN’s method of 

initialization (initialize the target centers as the source class centers) necessarily works well. Since the CAN UDA 

method relies so heavily on the performance of the k-means algorithm to do well, some experiments were done to 

look more closely into its performance.  

 

To do this, the Office-31 dataset was utilized (see Figure 1). This dataset has 3 domains over 31 different object 

classes. The classes are objects one would normally find in an office environment like monitors, bookcases, and 

printers. The three domains are Amazon (clean professionally shot images from Amazon.com), DSLR (objects taken 

with a high quality DSLR camera), and webcam (low quality images from a webcam camera). Then, several 

quantities were tracked during the training of CAN.  These results can be found in Table 2. We train four different 

Source Domain -> Target Domain models: Amazon -> DSLR, DSLR -> Amazon, Amazon -> Webcam, and Webcam -> 

Amazon. For each, in the left column we track the percentage of target psuedolabels kept (“filter_keep_percent”, in 

blue), the overall accuracy of the psuedolabels before filtering them (“target_p_acc_before_filter”, in green), and the 

overall accuracy of the psuedolabels after filtering them (“target_p_acc_before_filter”, in orange). In the right column, 

we track the mean distance from each point to their closest centroid (this is similar to the objective function for k-

means). All of these measurements are taken each iteration of the algorithm (an iteration is a psuedolabeling step 

in addition to a backpropagation step), for 50 iterations of training. We also report the final accuracy on the target 

domain test set as a heading above each row of plots. Note that tracking these quantities is normally impossible to 

do, because in UDA we don’t have the ground truth target labels. However, in our case because we are using a dataset 

meant for research, we can take a closer look into how CAN algorithm behaves with regards to the psuedolabeling.  

 

From taking a look at the results, we confirm the intuition that training with a clean, simple source domain like 

Amazon and transferring to a more complicated domain (like Webcam or DSLR) leads to better performance than 

the other away around. When Amazon is the source domain, both the psuedolabel accuracy before filtering and the 

amount of psuedolabels kept steadily increases. The psuedolabel accuracy after filtering stays relatively constant at 

a high percentage throughout, which means that the filter is effectively doing its job. This also supports the method 

of centroid initialization used.  

 

However, when using DSLR or Webcam as the source domain and using Amazon as the target domain, results are 

much different. We see that the filter is not working properly – it is constant at 100%, meaning that all psuedolabels 

are being used. As a result, the psuedolabel accuracy does not improve much after the 10th iteration. Finally, note 

that in all cases the k-means cost decreases to near zero. This indicates that the MMD-based loss is effective, in 

reducing the diameter o the clusters, even though the psuedolabels. In conclusion, these results suggest that more 

attention needs to be paid to the clustering algorithm used for psuedolabeling. It seems like algorithm is quite 

sensitive to the filter thresholds. Additionally, further work could be done on the k-means clustering algorithm, 

since it seems like it is currently prone to produce undesirable results. 

 

 

 

 



Soure Domain Amazon -> Target Domain DSLR (Final Target Acc 𝟗𝟓) 

  
Soure Domain Amazon -> Target Domain Webcam (Final Target Acc 𝟗𝟒. 𝟓) 

  
Soure Domain DSLR -> Target Domain Amazon (Final Target Acc 𝟕𝟖) 

  
Soure Domain Webcam -> Amazon Domain DSLR (Final Target Acc 𝟕𝟕) 

  
 

Table 2. Results on the Office-31 dataset, which plot psuedolabel-related measurements as a function of iteration, 

during the training of CAN.  



References 
 
[1] Kang, Guoliang, et al. "Contrastive adaptation network for unsupervised domain adaptation." Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2019. 

[2] Sun, Baochen, Jiashi Feng, and Kate Saenko. "Return of frustratingly easy domain adaptation." Thirtieth AAAI Conference on Artificial Intelligence. 2016. 

[3] Sun, Baochen, and Kate Saenko. "Deep coral: Correlation alignment for deep domain adaptation." European conference on computer vision. Springer, 

Cham, 2016. 

[4] Morerio, Pietro, Jacopo Cavazza, and Vittorio Murino. "Minimal-entropy correlation alignment for unsupervised deep domain adaptation." arXiv 

preprint arXiv:1711.10288 (2017). 

[5] Wang, Yifei, et al. "Deep domain adaptation by geodesic distance minimization." Proceedings of the IEEE International Conference on Computer Vision 

Workshops. 2017. 

[6] Gretton, Arthur, et al. "A kernel two-sample test." Journal of Machine Learning Research 13.Mar (2012): 723-773. 

[7] Tzeng, Eric, et al. "Deep domain confusion: Maximizing for domain invariance." arXiv preprint arXiv:1412.3474 (2014). 

[8] Long, Mingsheng, et al. "Learning transferable features with deep adaptation networks." arXiv preprint arXiv:1502.02791 (2015). 

[9] Long, Mingsheng, et al. "Deep transfer learning with joint adaptation networks." Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR. org, 2017. 

[10] Long, Mingsheng, et al. "Unsupervised domain adaptation with residual transfer networks." Advances in neural information processing systems. 2016. 

[11] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The Journal of Machine Learning Research 17.1 (2016): 2096-2030. 

[12] Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE International Conference on Computer Vision. 2015. 

[13] Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

2017. 

[14] Bhushan Damodaran, Bharath, et al. "Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation." Proceedings of the 

European Conference on Computer Vision (ECCV). 2018. 

[15] Sankaranarayanan, Swami, et al. "Generate to adapt: Aligning domains using generative adversarial networks." Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2018. 

[16] Volpi, Riccardo, et al. "Adversarial feature augmentation for unsupervised domain adaptation." Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018. 

[17] Gong, Boqing, et al. "Geodesic flow kernel for unsupervised domain adaptation." 2012 IEEE Conference on Computer Vision and Pattern Recognition. 

IEEE, 2012. 

[18] Chopra, Sumit, Suhrid Balakrishnan, and Raghuraman Gopalan. "Dlid: Deep learning for domain adaptation by interpolating between domains." ICML 

workshop on challenges in representation learning. Vol. 2. No. 6. 2013. 

[19] Gopalan, Raghuraman, Ruonan Li, and Rama Chellappa. "Domain adaptation for object recognition: An unsupervised approach." 2011 international 

conference on computer vision. IEEE, 2011. 

[20] Gong, Rui, et al. "DLOW: Domain flow for adaptation and generalization." Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 2019. 

[21] Ben-David, Shai, et al. "A theory of learning from different domains." Machine learning 79.1-2 (2010): 151-175. 

[22] You, Kaichao, et al. "Towards accurate model selection in deep unsupervised domain adaptation." International Conference on Machine Learning. 2019. 

[23] Kim, Seunghyeon, et al. "Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object 

detection." Proceedings of the IEEE International Conference on Computer Vision. 2019. 

[24] Zhang, Yang, Philip David, and Boqing Gong. "Curriculum domain adaptation for semantic segmentation of urban scenes." Proceedings of the IEEE 

International Conference on Computer Vision. 2017. 

[25] Motiian, Saeid, et al. "Unified deep supervised domain adaptation and generalization." Proceedings of the IEEE International Conference on Computer 

Vision. 2017. 

[26] You, Kaichao, et al. "Universal domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. 

[27] Panareda Busto, Pau, and Juergen Gall. "Open set domain adaptation." Proceedings of the IEEE International Conference on Computer Vision. 2017. 

 

 

 


